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Summary. In this paper we describe the solution of the quantum mechanical 
equation for the scattering of  an atom by a diatomic molecule on a high-perfor- 
mance distributed-memory parallel supercomputer, using the method of sym- 
metrized hyperspherical coordinates and local hyperspherical surface functions. 
We first cast the problem in a format whose inherent parallelism can be exploited 
effectively. We next discuss the practical implementation of  the parallel programs 
that were used to solve the problem. The benchmark results and timing obtained 
from the Caltech/JPL Mark I l l fp hypercube are competitive with the CRAY 
X-MP, CRAY 2 and CRAY Y-MP supercomputers. These results demonstrate 
that such highly parallel architectures permit quantum scattering calculations 
with high efficiency in parallel fashion and should allow us to study larger, more 
complicated chemical systems. Future extensions to this approach are discussed. 

Key words: Reactive sca t te r ing-  Hyperspherical coord ina tes -  Parallel super- 
computer 

1. Introduction 

Chemistry has long been one of the primary application areas for computers in 
scientific research. Quantum mechanical reactive scattering calculations, in par- 
ticular, have consumed vast quantities of  computer time on machines of all sizes. 
Accurate solutions have proved to be difficult and computationally expensive to 
obtain [1-4]. Such calculations would allow an interplay between theory and 
experiment which is vital to advance our understanding of the details of chemical 
reactions at the molecular level. Perhaps more importantly, the existence of 
accurate benchmark calculations permits the testing of  approximate theories 
which in turn provides physical insights into the chemistry. 
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The first calculations of accurate quantum mechanical cross sections were 
reported in 1975 by Schatz and Kuppermann [5, 6] and Elkowitz and Wyatt [7] 
for the simplest chemical reaction H + H2 ~ H2 + H. After this, there was a lapse 
of over 10 years before these results were extended to higher energies and other 
systems. The problem is not only the inherent limitations in the theoretical 
methods but also the lack of sufficiently powerful computers [1-9]. Recently, a 
variety of efficient methodologies have been developed for carrying out calcula- 
tions of reaction cross sections. With the current access to the CRAY-type 
supercomputers, there has been a remarkable surge in the number of publica- 
tions in this field [10-21]. In particular, the use of symmetrized hyperspherical 
coordinates (SHC) [22, 23] and local hyperspherical surface functions (LHSF) 
[10, 17, 18] is a very promising approach [12, 24, 25]. However, even the fastest 
available supercomputers are not sufficiently fast to allow the study of chemical 
reactions involving more than three atoms. Mathematical modelling and under- 
standing the chemistry involved have progressed to a point that only the lack of 
sufficient computing power is delaying detailed insight into the nature of many 
chemical reactions. 

The initial route to supercomputing led by the CRAY machines is based on 
the construction of computers with very fast cycle times. Although this approach 
has produced very powerful machines, it is generally believed [26-28] that the 
key to future high performance computation to satisfy our need for both large 
numbers of CPU cycles and large amounts of fast memory is concurrent 
processing, or the use of several computers tied together through a very high 
speed network to solve a single problem. The algorithms used and the codes 
developed on sequential machines must be adapted to parallel computing. 
Hence, these new parallel algorithms, coupled with the capabilities of par- 
allel supercomputers, permit theoretical studies of a wide variety of chemical 
reactions. 

The considerations above provide motivation for investigating the use of 
highly parallel computers as a possible way to reduce the computational time for 
such calculations [29]. We chose the Caltech/JPL Mark IIIfp 64 processor 
hypercube [26-28], a distributed memory message passing parallel computer, as 
our test machine. The essential property a calculation must have to be efficiently 
done on a highly parallel computer is that it be decomposable in such a way that 
in performing it almost all processors should be computing efficiently almost all 
of the time, and that the communication time between the processors should 
represent a small fraction of the computation time. In this paper, we show how 
quantum mechanical reactive scattering calculations can be structured so as to 
fulfill these criteria. The performance of this implementation is also examined. 

We divide this paper into four additional sections. In Sect. 2 we provide an 
overview of the methodology and computational requirements for calculating 
LHSF and for using Johnson's logarithmic derivative method [30, 31], modified 
to include the improvements suggested by Manolopoulos [32], for integrating the 
resulting coupled channel reactive scattering equations. In Sect. 3 the parallel 
algorithm is presented. In Sect. 4 benchmark results of scattering calculations for 
the H + H2 system total angular momentum J = 0, 1, 2 partial waves on the 
LSTH [33, 34] potential energy surface are presented. We emphasize that even 
though the results we report were obtained for three identical particles, the 
implementation itself is applicable to general three body system in a parallel 
fashion. Ongoing and future extensions to this approach are also discussed. The 
last section contains some concluding remarks. 
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2. Quantum chemical dynamics 

The goal of bimolecular quantum chemical dynamics is to calculate from first 
principles the reaction cross sections for an atom (or molecule) scattered by 
another molecule. Most chemical reactions take place as a result of interactions 
among three or four atoms. The only type of chemical reaction we are likely to 
be able to solve rigorously in the forseeable future is a three atom reaction of the 
type A + BC ~ AB + C or its four atom counterpart. Given the potential energy 
surface that governs an electronically adiabatic reaction, we use the nuclear 
motion SchrSdinger equation to describe the collision of an atom and a diatomic 
molecule and the ensuing chemical reaction process. 

The Schr6dinger equation is a linear, second-order partial differential equa- 
tion with 3N independent variables where N is the number of atoms in the 
system. One fruitful approach to solve this equation is based on hyperspherical 
coordinates [10, 11, 17, 18]. The detailed formulation of this approach is dis- 
cussed elsewhere [ I0, 11, 17] and we will present a very brief review of the theory, 
listing the equations necessary to facilitate the explanation of the parallel 
algorithms. 

For a triatomic system, we label the three atoms A~, A~ and A~. Let (2, v, ~:) 
be any cyclic permutation of the indices (cg fl, 7). After removing the motion of 
the center of mass, we define as the 2 coordinates the mass-scaled [35] inter- 
nuclear vector r~ from Av to A~, and the mass-scaled position vector Rz of A~ 
with respect to the center of mass of Av A~ diatom. The symmetrized hyperspher- 
ical coordinates [22] are the hyperradius 0 = (R 2 + r~) in, and a set of 5 angles 
co;~, 7~, 0x, q~x and Ox, denoted collectively as ~.  The first two of these are in the 
range 0 to rc and are respectively 2 arctan rz/Ra and the angle between Ra and ra. 
The angles 0a, ~b~ are the polar angles of R~ in a space-fixed flame and @;. is the 
tumbling angle of the Rx, ~'x half-plane around its edge R~. The hamiltonian/t~ 
is the sum of a radial kinetic energy operator in ~, and the surface hamiltonian 
£~, which contains all differential operators in ~a and the electronically adiabatic 
potential energy function V(0, co;., h) .  

where 

and 

h2(e 2 5,~) 
(1) 

Z•2 
~a -- 2b/Q2 at- 17(@, cO;., 7a) (2) 

COS2 T 

is the angular momentum operator corresponding to r~, ~ is that correspond- 
ing to R~ and # = [rn~mpm~/(m~ +m~ + mr)] 1/2 is the reduced mass appropriate 
for the mass-scaled coordinates. ~ depends on Q parametrically and is therefore 
the "frozen" hyperradius part of /~ ; .  

The scattering wave function ~,Mnr is labelled by the total angular momen- 
tum J, its projection M on the laboratory-fixed Z axis, the inversion parity H 
with respect to the center of mass of the system and the irreducible representa- 
tion F of the permutation group of the system (P3 for H + H2) to which the 
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electronuclear wave function, excluding the nuclear spin part [36, 37], belongs. It 
can be expanded in terms of the LHSF q)JMnr, defined below, and calculated at 
the values 0q of 0: 

= Z - • 
- . ,  ,e, 0q) n 0q) (4) 

n 

The equation that defines the LHSF qjJMnr with associated eigenvalues %~snr is 
h~ d ~ J M I I F [ y  . __ o J F I V ( a  " ~ J M F I F f y  . 

2 "x" n \ $ 2 0 q )  , - -  on k~q)'a"n \$2,  Oq) (5)  

The domain of the surface function equation is closed and the spectrum is real 
and discrete. The index i is introduced to permit consideration of a set of many 
linearly independent solutions of the Schr6dinger equation corresponding to 
distinct initial conditions which are needed to obtain the appropriate scattering 
matrices. 

The LHSF d ~ S M l l r i r  . "~, ~ ,  Oq) and associated energies gJnrl l" (Oq)  a r e  obtained by 
using a Rayleigh-Ritz variational approach [17]. The key to the success of the 
variational approach is finding a set of functions which are numerically inexpen- 
sive to calculate and also embody some of the structure of the true surface 
function. One effective set of functions consists of products of Wigner rotation 
matrices DJMa(4)~, 0~, ~k~), associated Legendre functions of 7~ and functions of e)~ 
which depend parametrically on Oq and are obtained from the numerical solution 
of one-dimensional eigenvalue-eigenfunction differential equations in cox involv- 
ing a potential related to V(O, oJ~, 7a)- 

The variational method leads to an eigenvalue problem with coefficient and 
overlap matrices hJUr(Oq) and sJnr(Oq) and whose elements are 5-dimensional 
integrals involving the variational basis functions. 

The coefficients h Jrl r ( - " ~,~ ,e, 0q) defined by Eq. (4) satisfy a coupled set of second 
order differential equations involving an interaction matrix Jsnr(e; 0q) whose 
elements are defined by: 

[ ~ J ~ r ( 0 ;  - ,, Oq)]n = (C~)JnMHF(~2 ; Oq) lV (o ,  (,o~., ~)~) 

IcI)JMr~rr~ ; - - (Oq /O)2V(Oq ,  (O)., g2) n t. j. Oq) > (6) 

The configuration space 0, ~), is divided in a set of Q hyperspherical shells 
.~q 4 0 ~< 0q + 1 (q = 1, 2 , . . . ,  Q) within each of which we choose a value Oq used 
in Eq. (4). 

When changing from the LHSF set at 0e to the one at 0q+~ neither 7s] Mur 
nor its derivative with respect to 0 should change. This imposes continuity 
conditions on the ba,~ r and their 0-derivatives at 0 = 0q +~, involving the overlap 
matrix (9sur(Oq + 1, Oq) between the LHSF evaluated at Oq and Oq+l: 

- JMHF . [~oJlTF(~q+l, 0q)] n'~'~- N'Z'n/t'lIJMITF(Y\'2," 0q+ 1) [~n  ' (~ l ,  Oq)> (7)  

The 5-dimensional integrals required to evaluate the elements of h sssr, s Jut, 
jJssr and (_9 snr are performed analytically over the three Euler angles ~b~, 0x and 
i/x~ and by two-dimensional numerical quadratures over yx and a~. These 
numerical quadratures are the most expensive part of the entire LHSF computa- 
tion and account for over 90% of the total time needed to calculate the eba, Mssr 
and the matrices j s u r  and (9 attr. 

The system of second-order ordinary differential equations in the ~,~M nr is 
integrated as an initial value problem from small values of 0 to large values using 
Manolopoulos' logarithmic derivative propagator [32]. Matrix inversions ac- 
count for more than 90% of the time used by this propagator on sequential 
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machines. All aspects of the physics can be extracted from the solutions at large 
by a constant ~ projection [10, 1l, 38]. 

3. Parallel algorithm 

One must first have an idea of what can be gained by parallel processing. Vast 
speedup can only be achieved for problems that can be grouped into concurrent 
cooperative subtasks. This, of course, involves an understanding of the level of 
parallelism that a problem manifests. Even with such understanding and an 
adequate mapping onto a system of cooperative processors, there still remains 
the critical issue of how to best implement processor coordination. Further, it is 
vitally important that the local data in processors be correct in a global sense, 
i.e., data modifications must be distributed across private memory boundaries. 
Since quantum reactive scattering calculations are well suited to multiprocessor 
systems, parallelism is achieved by data decomposition rather than by functional 
decomposition, i.e., by making all nodes execute the same code but with different 
data. In building a parallel implementation on the hypercube architecture, our 
main guidelines have been simplicity and utilization of as much of the original 
sequential code as possible. 

The computer used for this work is a 64-processor Mark IIIfp hypercnbe. It 
consists of an ensemble of individual processing elements called nodes. The design 
of the Mark IIIfp hypercube permits as few as one and as many as 256 nodes in 
the ensemble. It is a leading design for MIMD-type (multiple instruction stream 
multiple data stream) distributed memory parallel architectures based on message 
passing [26-28]. Each node consists of two independent Motorola 68020 mi- 
croprocessors, one for computation and one for I/O, and four megabytes of 
dynamic local memory with an access speed of 400 nanoseconds. The computation 
microprocessor has a Motorola 68882 floating-point arithmetic coprocessor, two 
serial ports, one printer port and 128 kilobytes of static private memory. The I/O 
microprocessor has 64 kilobytes of static private memory, one serial port and 
hardware to support the node to node communication within the hypercube. An 
additional daughter board with a pipe-lined 32-bit floating point unit based on 
the Weitek XL series of chips is attached to each node which further contains 128 
kilobytes of code cache, 128 kilobytes of static memory and has a nominal peak 
speed of 16 Mflops. The Crystalline Operating System (CrOS)-channel-addressed 
synchronous communication provides the library routines to handle communica- 
tions between nodes [28, 39, 40]. Program development is done on a Motorola 
68020-based Counterpoint workstation that runs on UNIX. It acts as an access 
controller mechanism to the peripherals for the entire hypercube. This allows the 
native compilers and linkers of the control processor to be used to construct 
executable code to run on the nodes of the hypercube. The parallel programs 
consist of two complementary parts with one running on the control processor 
and one running on each hypercube node. It is written in C programming 
language except for the time-consuming two-dimensional quadratures and matrix 
inversions, which are optimized in Weitek XL assembly language. 

The hypercube is configured as a two-dimensional array of processors. The 
mapping is done using binary Gray codes [28, 41] which gives the Cartesian 
coordinates in processor space and communication channel tags for a processor's 
nearest neighbors. With a distributed-memory machine like the hypercube, the 
elements of a large matrix of data must be distributed across the memory of all 
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the processors. This makes it possible to fully utilize the large memory available 
and if done properly facilitates the load-balancing task of keeping most of the 
processors busy doing useful arithmetic most of the time. The parallelization of 
scientific codes is frequently based on a large grain size decomposition of the 
task. To port a sequential code to a hypercube, a method of distributing the 
global matrix among the processors is the first choice that must be made and it 
is closely related to the parallel algorithm chosen. 

We mapped the matrices intoprocessor space by local decomposition. Let Nr 
and Nc be the number of processors in the rows and columns of the hypercube 
configuration, respectively. Element A(i,j)  of an M x M matrix is placed in 
processor row Pr = int((i x Nr)/M) and column Pc = int((j x Nc)/M), where 
int x means the integer part of x. This data decomposition has been found easy 
to maintain and has provided satisfactory load balancing; it has the further 
advantage that it does not require matrices of special dimensions. 

The parallel code implemented on the hypercube consists of five major steps. 
Step one constructs, for each value of 0q, a primitive basis set composed of the 
product of Wigner rotation matrices, associated Legendre functions, and the 
numerical one-dimensional functions in cox mentioned in Sect. 2 and obtained by 
solving the corresponding one-dimensional eigenvalue-eigenvector differential 
equation using a finite difference method. This requires that a subset of the 
eigenvalues and eigenvectors of a tridiagonal matrix be found. 

A bisection method [42] which accomplishes the eigenvalue computation 
using the TRIDIB routine from EISPACK [43] was ported to the Mark IIIfp. 
This implementation of the bisection method allows computation of any number 
of consecutive eigenvalues specified by their indices. Eigenvectors are obtained 
using the EISPACK inverse iteration routine TINVIT with modified Gram- 
Schmidt orthogonalization. Each processor solves independent tridiagonal eigen- 
problems since the number of eigenvalues desired from each tridiagonal system 
is small but there are a large number of distinct tridiagonal systems. To achieve 
load balancing, we distributed subsets of the primitive functions among the 
processors in such a way that no processor computes greater than one eigenvalue 
and eigenvector more than any other. These large grain tasks are most easily 
implemented on MIMD machines; SIMD (single instruction stream multiple 
data stream) machines would require more extensive modifications and would be 
less efficient because of the sequential nature of currently known effective 
eigenvalue iteration procedures. The one-dimensional functions obtained are 
then broadcast to all the other nodes. 

In step two a large number of two-dimensional quadratures involving the 
primitive basis functions which are needed for the variational procedure are 
evaluated. These quadratures are highly parallel procedures requiring no com- 
munication overhead once each processor has the necessary subset of functions. 
Each processor calculates a subset of integrals independently. 

Step three assembles these integrals into the real symmetric dense matrices 
sJrlr(Oq) and hSnr(Oq) which are distributed over processor space. The entire 
spectrum of eigenvalues and eigenvectors for the associated variational problem 
is sought. With the parallel implementation of the Householder method [44], this 
generalized eigensystem is tridiagonalized and the resulting single tridiagonal 
matrix is solved in each processor completely with the QR algorithm [45]. The 
QR implementation is purely sequential since each processor obtains the entire 
solution to the eigensystem. However, only different subsets of the solution are 
kept in different processors for the evaluation of the interaction and overlap 
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matrices in step four. This part of the algorithm is not time-consuming and the 
straightforward sequential approach was chosen. It has the further effect that the 
resulting solutions are fully distributed, so no communication is required. 

Step four evaluates the two-dimensional quadratures needed for the interac- 
tion JJnr(Q;Oq) and overlap (ffJIIr(Oq+l;Oq) matrices. The same type of al- 
gorithms are used as were used in step two. By far, the most expensive part of 
the sequential version of the surface function calculation is the calculation of the 
large number of two-dimensional numerical integrals required by steps 2 and 4. 
These steps are however highly parallel and well suited for the hypercube. 

Step five uses Manolopoulos' [32] algorithm to integrate the coupled linear 
ordinary differential equations. The parallel implementation of this algorithm is 
discussed elsewhere [30]. The algorithm is dominated by parallel Gauss-Jordan 
matrix inversion and is I/O intensive, requiring the input of one interaction 
matrix per integration step. To reduce the I/O overhead a second source of  
parallelism is exploited. The entire interaction matrix (at all Q) and overlap 
matrix (at all 0q) data sets are loaded across the processors and many collision 
energies are calculated simultaneously. This strategy works because the same set 
of data is used for each collision energy and because enough main memory is 
available. Calculation of scattering matrices from the final logarithmic derivative 
matrices is not computationally intensive, and is done sequentially. 

The program steps were all run on the Weitek coprocessor which only 
supports 32-bit arithmetic. Experimentation has shown that this precision is 
sufficient for the work reported below. The 64-bit arithmetic hardware needed 
for larger calculations was installed after the present calculations were 
completed. 

4. Results and discussion 

Accuracy. Calculations were performed for the H + H2 system on the LSTH 
surface [33, 34] for partial waves with total angular momentum J = 0, 1, 2 and 
energies up to 1.6 eV. Flux is conserved to better than 1% for J = 0, 2.3% for 
J = 1 and 3.6% for J = 2 for all open channels over the entire energy range 
considered. 

To illustrate the accuracy of the 32-bit arithmetic calculations, the scattering 
results from the Mark IIIfp with 64 processors are compared with the results 
obtained using a CRAY X-MP/48 and a CRAY 2. The differences of the 
transition probability do not exceed 0.004 in absolute value over the energy 
range investigated. 

Timing and parallel efficiency. In Tables 1 and 2 we present the timing data on 
the 64 processor Mark IIIfp, a CRAY X-MP/48 and a CRAY 2, for both the 
surface function code (including calculation of the overlap (9 snr and interaction 
j :nr  matrices) and the logarithmic derivative propagation code. For the surface 
function code, the speeds on the first two machines is about the same. The 
CRAY 2 is 1.43 times faster than the Mark IIIfp and 1.51 times faster than the 
CRAY X-MP/48 for this code. The reason is that this program is dominated by 
matrix-vector multiplications which are done in optimized assembly code in all 3 
machines. For this particular operation the CRAY 2 is 2.03 times faster than the 
CRAY X-MP/48 whereas for more memory-intensive operations the CRAY 2 is 
slower than the CRAY X-MP/48 [46]. A slightly larger primitive basis set is 
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Table 1. Performance of the surface function code d 

Y. M. Wu et al. 

J Mark IIIfp b 64 processors CRAY X-MP/48 CRAY 2 

Time (h) Speed (Mflops) Time (h) Speed (Mftops) Time (h) Speed (Mflops) 

0 0.71 c 100 d 0.74 ~ 96 f 0.49g 145 h 
1 2.88 i ] 120 3.04J 106 r 2.01 k 160 h 
2 5.601 124 a 5.94 TM 117 n 3.96 ° 176 k 

a This code calculates the surface functions at the 51 values of ~ from 2.0 bohr to 12.0 bohr in steps 
of 0.2 bohr, the corresponding overlap matrices between consecutive values of ~ and the propagation 
matrices in Q steps of 0.1 bohr. The number of primitives used for each J and described in the 
remaining footnotes permits us to generate enough LHSF to achieve the accuracy described in the 
text 
b 64 single precision processors 
c For 80A1, 80Az and 160E primitives. This basis is larger than the one described in e below and is 
needed to generate the same number of linearly independent surface functions as in e. The reason for 
this difference is the 32-bit arithmetic of the Mark IIIfp compared to the 64-bit arithmetic of the 
CRAY X-MP/48 
d Estimated on the basis of the absolute measured speed on the CRAY X-MP/48 and the measured 
relative speeds of the Mark IIIfp with respect to the CRAY X-MP/48 
e For 76A1, 76A2 and 152E primitives 
f Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines 
g This time, for the same primitives as described in e was estimated on the basis of the relative speeds 
of the CRAY 2 and CRAY X-MP/48 measured for a set of 5 values of ~. It is smaller than the time 
in ~ for the reason given in h 
h Estimated on the basis of the relative speed of the CRAY 2 with respect to the CRAY X-MP/48 
described in g. The reason this speed is 2/3 of the corresponding CRAY X-MP/48 speed is that the 
dominant parts of the calculation are optimized assembly code matrix-vector multiplications for 
which the CRAY 2 is 50% faster than the CRAY X-MP/48. Otherwise, the CRAY 2 is slightly slower 
than CRAY X-MP/48. See text 
i For 72A1, 80A 2 and 152E primitives of even parity and 152A1, 160A 2 and 312E primitives of odd 
parity. These numbers of primitives are larger than the ones given in J for the reason given in c 
J For 64A1, 76A 2 and 140E primitives of even parity and 140Al, 152A 2 and 292E primitives of odd 
parity 
k Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY 2 and the 
measured CRAy X-MP/48 times or speeds 
1 For 216A1, 232A 2 and 448E primitives of even parity and 136A1, 152A 2 and 288E primitives of odd 
parity. These numbers are larger than those in ° for the reason given in c 
m This time is estimated as in k, since the calculation cannot be done on the CRAY X-MP/48 because 
of insufficient memory 
n Estimated to be the same as in f, since the calculation cannot be done on the CRAY X-MP/48 for 
the reason given in m 
° For 204A 1 , 216A 2 and 420E primitives of even parity and 128A1, 140A z and 268E primitives of odd 
parity 

r e q u i r e d  o n  the  M a r k  I I I f p  in  o r d e r  to  o b t a i n  su r f ace  f u n c t i o n  ene rg ies  o f  an  
a c c u r a c y  e q u i v a l e n t  to  t h a t  o b t a i n e d  w i t h  t he  C R A Y  m a c h i n e s .  Th i s  is d u e  to  
t he  l o w e r  a c c u r a c y  o f  t he  32-bi t  a r i t h m e t i c  o f  t he  f o r m e r  w i t h  r e s p ec t  to  t he  
64-bi t  a r i t h m e t i c  o f  the  la t te r .  

T h e  a b s o l u t e  t imes  p r e s e n t e d  in T a b l e s  1 a n d  2 a re  ap t  to  d e c r e a s e  as  t he  
c o d e s  a re  i m p r o v e d  a n d  the  n u m e r i c a l  p a r a m e t e r s  are  f u r t h e r  t u n ed .  A s  a resul t ,  
t h e y  are  n o t  well  su i ted  fo r  a c o m p a r i s o n  o f  the  re la t ive  e f fec t iveness  o f  d i f f e ren t  
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Table 2. Performance of the logarithmic derivative code a 

233 

Mark IIIfp b CRAY X-MP/48 CRAY 2 

64 processor 8 clusters of 
global configuration c 8 processors a 

Total time (h) 4.8 e 3.4 f,g 1.5 2.9 h 
Time for 1 energy (min) 2.2 i 1.6 i 0.7 1.3 
Efficiency 0.52 0.81 - -  - -  
Speed j (Mflops) 34.4 k 48.5 k 110 55.4 

a Based on a calculation using 245 surface functions and 131 energies, and a logarithmic derivative 
integration step of 0.01 bohr 
b 64 single precision processors 
c The calculation for each energy was distributed among all 64 processors 
d The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations 
for 16 energies, for a total of 128 energies. The times reported were multiplied by 131/128 for 
normalization purposes. All 8 clusters operated simultaneously 
e This includes 1.9 hours of I/O time 
fThis includes 1.6 hours of I/O time. This time is shorter than that in e because of a different and 
more efficient broadcast of the data between the host and the 8 clusters 
g Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported 
was obtained by subtracting the I/O time from the measured time, multiplying the result by 131/128 
for normalization to 131 energies and adding the I/O time 
h Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY 2 
and CRAY X-MP/48 for the logarithmic derivative code 
i This includes the pro-rated I/O contribution 
JAil speeds include I]O contribution 
k Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code 
and the relative speeds of the Mark IIIfp and CRAY X-MP/48 for this code 

react ive scat ter ing m e t h o d o l o g i e s  [ 10-21].  The  re levant  i n fo rma t ion  in those 
tables  is, instead,  the relat ive t imes a m o n g  different machines  as given by the cor-  
r e spond ing  speeds. These are  indicat ive o f  the relat ive effectiveness o f  these 
machines  for  pe r fo rming  the react ive scat ter ing calcula t ions  descr ibed in this paper .  

The  efficiency (E) o f  the para l le l  L H S F  code  was de te rmined  using the 
defini t ion ~ = 7"1/(N x TN) where 7"1 and  TN are respect ively the execut ion t imes 
using a single p rocessor  and  N processors .  The  single processor  t imes are 
ob ta ined  f rom runs  pe r fo rmed  af ter  removing  the overhead  o f  the paral le l  code,  
i.e., af ter  r emoving  the commun ica t i on  calls and  some logical  s tatements .  Perfect  
efficiency (e = 1.0) implies  tha t  the N - p r o c e s s o r  hypercube  is N t imes faster  than  
a single processor .  In  Fig.  1 efficiencies for  the surface funct ion code ( inc luding  
the ca lcula t ion  o f  the over lap  and  in te rac t ion  matr ices)  as a funct ion o f  the size 
o f  the pr imi t ive  basis set are p lo t t ed  for  2, 4, 8, 16, 32 and  64 processor  
conf igura t ions  o f  the hypercube.  The  g lobal  d imens ions  o f  the matr ices  used are 
chosen to  be integer  mul t ip les  o f  the n u m b e r  o f  p rocessor  rows and co lumns  in 
o rde r  to insure load  ba lanc ing  a m o n g  the processors .  Because o f  the l imited size 
o f  a single p rocessor  memory ,  the efficiency de t e rmina t ion  is l imited to 32 
primit ives.  As  shown in Fig.  1, the efficiencies increase mono ton i ca l l y  and  
a p p r o a c h  uni ty  a sympto t i ca l ly  as the size o f  the ca lcula t ion  increases. Converged  
results  require  large enough  pr imi t ive  basis sets so tha t  the efficiency o f  the 
surface funct ion code  is es t imated  to be a b o u t  0.95 or  greater.  
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Fig. 1. Efficiency of the 
surface function code 
(including the calculation 
of the overlap and 
interaction matrices) as a 
function of the global 
matrix dimension (i.e., the 
size of the primitive basis 
set) for 2, 4, 8, 16, 32, and 
64 processors. The solid 
curves are straight line 
segments connecting the 
data points for a fixed 
number of processors and 
are provided as an aid to 
examine the trends 

The data for the logarithmic derivative code given in Table 2 for a 245 
channel (i.e., LHSF) example show that the Mark IIIfp has a speed about 62% 
to that of the CRAY 2 but only about 31% of that of the CRAY X-MP/48. 
This code is dominated by matrix inversions, which are done with optimized 
assembly code in all three machines. The reason for the slowness of the 
hypercube with respect to the CRAYs is that the efficiency of the parallel 
logarithmic derivative code is 0.52 and by slow I/O to external storage devices. 
This relatively low value is due to the fact that matrix inversions require a 
significant amount of inter-processor communication. Figure 2 displays efficien- 
cies of the logarithmic derivative code as a function of the number of channels 
propagated for different processor configurations, as done previously for 
the Mark III [30, 47] hypercubes. The data can be fit well by an operations 
count formula developed previously for the matrix inversion part of the code 
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Fig. 2. Efficiency of 
logarithmic derivative code 
as a function of the global 
matrix dimension (i.e., the 
number of channels or 
LHSF) for 8, 16, 32, and 
64 processors. The solid 
curves are straight line 
segments connecting the 
data points for a fixed 
number of processors and 
are provided as an aid to 
examine the trends 
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[48]; this formula can be used to extrapolate the data to larger numbers of 
processors or larger numbers of channels. It can be seen that for an 8 processor 
configuration, the code runs with an efficiency of 0.81. This observation suggested 
that we divide the Mark IIIfp into 8 clusters of 8 processors each and perform 
calculations for different energies in different clusters. The corresponding timing 
information is also given in Table 2. As can be seen from the last row of this table, 
the speed of the logarithmic derivative code using this configuration of the 64 
processor Mark IIIfp is 48.5 Mflops, which is about 44% of that of the CRAY 
X-MP/48 and 88% of that of the CRAY 2. As the number of channels increases, 
the number of processors per cluster may be made larger in order to increase the 
amount of memory available in each cluster. The corresponding efficiency should 
continue to be adequate due to the larger matrix dimensions involved. 

Ongoing and future work. From the previous discussions it appears that our 
application is well adapted to the hypercube architecture. However, our systems 
are experimental and continually evolving in terms of both hardware and 
software. In the near future, the number of processors of the Mark IIIfp will be 
increased to 128 and the I/O system will be replaced by high performance CIO 
(concurrent I/O) hardware. The new Weitek coprocessors, installed since the 
present calculations were done perform 64 bit floating point arithmetic at about 
the same nominal peak speed as the 32 bit boards. From the data in the present 
paper it is possible to predict with good reliability the performance of this 
upgraded version of the Mark IIIfp. Speed measurements on the CRAY Y-MP/ 
864 of the San Diego Supercomputer Center show that it is 2 times faster than 
the CRAY X-MP/48 for the surface function code and 1.7 times faster for the 
logarithmic derivative code. In Table 3, we summarize the available or predicted 
speed information for the present codes for the current 64 processor and near 
future 128 processor Mark IIIfp as well as the CRAY X-MP/48, CRAY 2 and 
CRAY Y-MP/864 supercomputers. It can be seen that Mark IIIfp machines are 
competitive with all of the currently available CRAYs (operating as single 
processor machines). 

Table 3. Overall speed of reactive scattering codes on several machines 

Mark IIIfp C R A Y  C R A Y 2  C R A Y  
X-MP/48 Y-MP 864 

64 processor 128 processors 

Surface function code 
for J = 2 (Mflops) 124 240 a 117 b 176 b 232 b 

Logarithmic derivative 
code c (Mflops) 48.5 d 127 a,a,e 110 b 55.4 b 187 b 

Total main memory  of  
computer  (64 bit Mwords) 32 64 8 256 64 

a Estimated on the basis of  the 64 processor performance 
b For  single processor operation 
c For  245 channels. As the number  of  channels increases, the Mark  IIIfp speed increases by a factor 
not  exceeding 1.25, but  the speed of  the C R A Y  machines remains approximately constant  
d Hypercube configured in clusters o f  8 processors 
e This speed assumes four-fold increase in the 1/O data rate, compared to the 64 processor machine, 
due to concurrent I/O hardware 
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Today's supercomputers perform billions of arithmetic operations per sec- 
ond; by the mid 1990s, speed should be at least hundreds of times greater. In 
Table 4, we indicate the characteristics of some hypothetical future parallel 
machine characteristics including the upgraded Mark IIIfp hypercube just men- 
tioned. Quantum chemical reaction dynamics computations to date have in- 
volved three atoms and strain the power of  current supercomputers. The number 
N of coupled equations (or channels) which must be solved depends on the 
number of molecular ro-vibration states that are accessible, which in turn 
determines the order of the matrices that are manipulated. The matrix operations 
require a number of floating point operations of the order of N 3, and as a result 
the computational load increases as the cube of the number of channels. The 
memory requirements, on the other hand, increase with N 2. For  class A type 
machines (see Table 4), of the order of 100 hours of CPU time on a single CPU 
of a CRAY Y-MP and 48 Mwords of memory are needed to calculate cross 
sections for the simple H + H 2 - - * H 2 +  H reaction at 100 energies. Chemical 
reactions which are not thermoneutral and involve heavier atoms such as O + H2 
or F + HD will require about two orders of magnitude more computing time and 
up to 2 Gigawords of memory, depending on the number of channels involved. 
Class B type machines will be needed for the study of such reaction. For  three 
atom reactions on two electronically adiabatic surfaces or four atoms reactions 
like H + H 2 0  or H + COH, class C Tflop machines will be needed. Such 
machines should be available in the next 5 to 10 years. They should permit the 
ab inito study of hundreds of bimolecular chemical reactions of importance for 
the understanding of combustion, plasmas, atmospheric chemistry and other 
complex systems of basic and technological interest. The experience gained in the 
use of class A and B machines should improve the design and facilitate the use 
of class C computers. 

From Tables 1 to 3, we can find that the design details of  different 
supercomputers make some better-suited for certain computations than others. 
For  example, the surface function code is more efficient on the current Mark 
IIIfp 128 node hypercube while the logarithmic derivative code will run better on 
CRAY-type machines. Distributing large computations among several super- 
computers will provide the opportunity both to bring to bear greater computing 
power than is available in any single machine and to use the most suitable 

TaMe 4. Hypothetical future parallel supercomputer characteristics 

Class A Class B Class C 
Mark IIIfp (1991 1995) a (1996-2000) a 

Sustained speed/node 
(Mflops) 2 20 200 

Memory/node 
(Mwords) 0.5 4 32 

Inter-node communication 
bandwidth (Mbyte/s) 1 100 1000 

Number of nodes 128 1024 8192 
Total sustained speed 256 Mflops 20 Gflops 1.6 Tflops 
Total memory 64 Mword 4 Gword 262 Gword 
Total I/O rate 128 Mbyte/s 10 Gbyte/s 1 Tbyte/s 

a Time frame within which this machine class is expected to become available 
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machine for each step of  the task. Currently, a high performance network is 
being developed to support  host interfaces that operate at 800 million bits per 
second (Mbps) and that will connect multiple supercomputers at the Los Alamos 
National  Laboratory,  the California Institute of  Technology, the Jet Propulsion 
Laboratory  and the San Diego Supercomputer Center. With such a distributed 
heterogeneous computer,  it should be possible for example to run a single 
program on the eight processors of  the SDSC C R A Y  Y-MP/864 and the 128 
processors of  the Caltech Mark  I I I fp  hypercube at the same time with a total 
available memory  of  128 Mwords. Quantum scattering calculations on larger, 
more complicated chemical systems would also then become feasible with 
heterogeneous computers of  this type. 

5. Conclusion 

We have developed and implemented a strategy for performing quantum me- 
chanical reactive scattering calculations on the Mark  I I I fp  hypercube parallel 
supercomputer. The results obtained for the H + H2 system J = 0, 1, 2 partial 
waves agree well with those from a C R A Y  X-MP/48 and a C R A Y  2. The high 
degree of parallelism of  the most time-consuming step of the surface function 
calculation (the evaluation of two-dimensional numerical quadratures) leads to a 
high efficiency for that calculation. As a result, the speed of the 64 processor 
Mark  I I I fp  for the surface function calculation is about the same as that of  the 
C R A Y  X-MP/48 and about  0.7 of  that of  the CRAY 2. When configuring the 
Mark  I I I fp  into 8 clusters of  8 processors each, the logarithmic derivative code 
is about  56% slower than the C R A Y  X-MP/48 and 12% slower than the CRAY 
2. The speed of  the 128 processor Mark  I I I fp  soon to become available should 
exceed, both for the surface function calculation and the logarithmic derivative 
calculation, that of  the C R A Y  X-MP/48 and of  the CRAY 2; however, although 
still comparable to the C R A Y  Y-MP/864 for the surface function code, it will be 
32% slower for the logarithmic derivative code (the CRAYs operating as single 
processor machines). These results demonstrate the feasibility of  performing 
reactive scattering calculations with high efficiency in parallel fashion. As the 
processors continue to become more powerful and their number continue to 
increase and with the help of  high speed networks of  the type currently being 
developed, such parallel calculations in systems of  greater complexity will 
become practical in the not too distant future. 
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