
Theor Chim Acta (1991) 79:225-239 Theoretica
Chimica Acta
© Springer-Verlag 1991

Quantum chemical reaction dynamics on
a highly parallel supercomputer

Yi-Shuen Mark Wu*, Steven A. Cuccaro**, Paul G. Hipes***, and Aron
Kuppermann
Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and
Chemical Engineering****, California Institute of Technology, Pasadena, CA 91125, USA

Received October 9, 1990/Accepted November 13, 1990

Summary. In this paper we describe the solution of the quantum mechanical
equation for the scattering of an atom by a diatomic molecule on a high-perfor-
mance distributed-memory parallel supercomputer, using the method of sym-
metrized hyperspherical coordinates and local hyperspherical surface functions.
We first cast the problem in a format whose inherent parallelism can be exploited
effectively. We next discuss the practical implementation of the parallel programs
that were used to solve the problem. The benchmark results and timing obtained
from the Caltech/JPL Mark I l l fp hypercube are competitive with the CRAY
X-MP, CRAY 2 and CRAY Y-MP supercomputers. These results demonstrate
that such highly parallel architectures permit quantum scattering calculations
with high efficiency in parallel fashion and should allow us to study larger, more
complicated chemical systems. Future extensions to this approach are discussed.

Key words: Reactive sca t te r ing- Hyperspherical coord ina tes - Parallel super-
computer

1. Introduction

Chemistry has long been one of the primary application areas for computers in
scientific research. Quantum mechanical reactive scattering calculations, in par-
ticular, have consumed vast quantities of computer time on machines of all sizes.
Accurate solutions have proved to be difficult and computationally expensive to
obtain [1-4]. Such calculations would allow an interplay between theory and
experiment which is vital to advance our understanding of the details of chemical
reactions at the molecular level. Perhaps more importantly, the existence of
accurate benchmark calculations permits the testing of approximate theories
which in turn provides physical insights into the chemistry.

* Work performed in partial fulfillment of the requirements for the Ph.D. degree in Chemistry at the
California Institute of Technology.
** Current address: IDA/SRC, 17100 Science Drive, Bowie, MD 20715, USA
*** Current address: 2338 Redwood Road, Scotch Plains, NJ 07076, USA
**** Contribution number 8209

226 Y.M. Wu et al.

The first calculations of accurate quantum mechanical cross sections were
reported in 1975 by Schatz and Kuppermann [5, 6] and Elkowitz and Wyatt [7]
for the simplest chemical reaction H + H2 ~ H2 + H. After this, there was a lapse
of over 10 years before these results were extended to higher energies and other
systems. The problem is not only the inherent limitations in the theoretical
methods but also the lack of sufficiently powerful computers [1-9]. Recently, a
variety of efficient methodologies have been developed for carrying out calcula-
tions of reaction cross sections. With the current access to the CRAY-type
supercomputers, there has been a remarkable surge in the number of publica-
tions in this field [10-21]. In particular, the use of symmetrized hyperspherical
coordinates (SHC) [22, 23] and local hyperspherical surface functions (LHSF)
[10, 17, 18] is a very promising approach [12, 24, 25]. However, even the fastest
available supercomputers are not sufficiently fast to allow the study of chemical
reactions involving more than three atoms. Mathematical modelling and under-
standing the chemistry involved have progressed to a point that only the lack of
sufficient computing power is delaying detailed insight into the nature of many
chemical reactions.

The initial route to supercomputing led by the CRAY machines is based on
the construction of computers with very fast cycle times. Although this approach
has produced very powerful machines, it is generally believed [26-28] that the
key to future high performance computation to satisfy our need for both large
numbers of CPU cycles and large amounts of fast memory is concurrent
processing, or the use of several computers tied together through a very high
speed network to solve a single problem. The algorithms used and the codes
developed on sequential machines must be adapted to parallel computing.
Hence, these new parallel algorithms, coupled with the capabilities of par-
allel supercomputers, permit theoretical studies of a wide variety of chemical
reactions.

The considerations above provide motivation for investigating the use of
highly parallel computers as a possible way to reduce the computational time for
such calculations [29]. We chose the Caltech/JPL Mark IIIfp 64 processor
hypercube [26-28], a distributed memory message passing parallel computer, as
our test machine. The essential property a calculation must have to be efficiently
done on a highly parallel computer is that it be decomposable in such a way that
in performing it almost all processors should be computing efficiently almost all
of the time, and that the communication time between the processors should
represent a small fraction of the computation time. In this paper, we show how
quantum mechanical reactive scattering calculations can be structured so as to
fulfill these criteria. The performance of this implementation is also examined.

We divide this paper into four additional sections. In Sect. 2 we provide an
overview of the methodology and computational requirements for calculating
LHSF and for using Johnson's logarithmic derivative method [30, 31], modified
to include the improvements suggested by Manolopoulos [32], for integrating the
resulting coupled channel reactive scattering equations. In Sect. 3 the parallel
algorithm is presented. In Sect. 4 benchmark results of scattering calculations for
the H + H2 system total angular momentum J = 0, 1, 2 partial waves on the
LSTH [33, 34] potential energy surface are presented. We emphasize that even
though the results we report were obtained for three identical particles, the
implementation itself is applicable to general three body system in a parallel
fashion. Ongoing and future extensions to this approach are also discussed. The
last section contains some concluding remarks.

Quantum chemical reaction dynamics on a highly parallel supercomputer 227

2. Quantum chemical dynamics

The goal of bimolecular quantum chemical dynamics is to calculate from first
principles the reaction cross sections for an atom (or molecule) scattered by
another molecule. Most chemical reactions take place as a result of interactions
among three or four atoms. The only type of chemical reaction we are likely to
be able to solve rigorously in the forseeable future is a three atom reaction of the
type A + BC ~ AB + C or its four atom counterpart. Given the potential energy
surface that governs an electronically adiabatic reaction, we use the nuclear
motion SchrSdinger equation to describe the collision of an atom and a diatomic
molecule and the ensuing chemical reaction process.

The Schr6dinger equation is a linear, second-order partial differential equa-
tion with 3N independent variables where N is the number of atoms in the
system. One fruitful approach to solve this equation is based on hyperspherical
coordinates [10, 11, 17, 18]. The detailed formulation of this approach is dis-
cussed elsewhere [I0, 11, 17] and we will present a very brief review of the theory,
listing the equations necessary to facilitate the explanation of the parallel
algorithms.

For a triatomic system, we label the three atoms A~, A~ and A~. Let (2, v, ~:)
be any cyclic permutation of the indices (cg fl, 7). After removing the motion of
the center of mass, we define as the 2 coordinates the mass-scaled [35] inter-
nuclear vector r~ from Av to A~, and the mass-scaled position vector Rz of A~
with respect to the center of mass of Av A~ diatom. The symmetrized hyperspher-
ical coordinates [22] are the hyperradius 0 = (R 2 + r~) in, and a set of 5 angles
co;~, 7~, 0x, q~x and Ox, denoted collectively as ~. The first two of these are in the
range 0 to rc and are respectively 2 arctan rz/Ra and the angle between Ra and ra.
The angles 0a, ~b~ are the polar angles of R~ in a space-fixed flame and @;. is the
tumbling angle of the Rx, ~'x half-plane around its edge R~. The hamiltonian/t~
is the sum of a radial kinetic energy operator in ~, and the surface hamiltonian
£~, which contains all differential operators in ~a and the electronically adiabatic
potential energy function V(0, co;., h) .

where

and

h2(e 2 5,~)
(1)

Z•2
~a -- 2b/Q2 at- 17(@, cO;., 7a) (2)

COS2 T

is the angular momentum operator corresponding to r~, ~ is that correspond-
ing to R~ and # = [rn~mpm~/(m~ +m~ + mr)] 1/2 is the reduced mass appropriate
for the mass-scaled coordinates. ~ depends on Q parametrically and is therefore
the "frozen" hyperradius part of /~ ; .

The scattering wave function ~,Mnr is labelled by the total angular momen-
tum J, its projection M on the laboratory-fixed Z axis, the inversion parity H
with respect to the center of mass of the system and the irreducible representa-
tion F of the permutation group of the system (P3 for H + H2) to which the

228 Y . M . Wu et al.

electronuclear wave function, excluding the nuclear spin part [36, 37], belongs. It
can be expanded in terms of the LHSF q)JMnr, defined below, and calculated at
the values 0q of 0:

= Z - •
- . , ,e, 0q) n 0q) (4)

n

The equation that defines the LHSF qjJMnr with associated eigenvalues %~snr is
h~ d ~ J M I I F [y . __ o J F I V (a " ~ J M F I F f y .

2 "x" n \ $ 2 0 q) , - - on k~q)'a"n \$2, Oq) (5)

The domain of the surface function equation is closed and the spectrum is real
and discrete. The index i is introduced to permit consideration of a set of many
linearly independent solutions of the Schr6dinger equation corresponding to
distinct initial conditions which are needed to obtain the appropriate scattering
matrices.

The LHSF d ~ S M l l r i r . "~, ~ , Oq) and associated energies gJnrl l" (Oq) a r e obtained by
using a Rayleigh-Ritz variational approach [17]. The key to the success of the
variational approach is finding a set of functions which are numerically inexpen-
sive to calculate and also embody some of the structure of the true surface
function. One effective set of functions consists of products of Wigner rotation
matrices DJMa(4)~, 0~, ~k~), associated Legendre functions of 7~ and functions of e)~
which depend parametrically on Oq and are obtained from the numerical solution
of one-dimensional eigenvalue-eigenfunction differential equations in cox involv-
ing a potential related to V(O, oJ~, 7a)-

The variational method leads to an eigenvalue problem with coefficient and
overlap matrices hJUr(Oq) and sJnr(Oq) and whose elements are 5-dimensional
integrals involving the variational basis functions.

The coefficients h Jrl r (- " ~,~ ,e, 0q) defined by Eq. (4) satisfy a coupled set of second
order differential equations involving an interaction matrix Jsnr(e; 0q) whose
elements are defined by:

[~ J ~ r (0 ; - ,, Oq)]n = (C~)JnMHF(~2 ; Oq) lV (o , (,o~., ~)~)

IcI)JMr~rr~ ; - - (Oq /O)2V(Oq , (O)., g2) n t. j. Oq) > (6)

The configuration space 0, ~), is divided in a set of Q hyperspherical shells
.~q 4 0 ~< 0q + 1 (q = 1, 2 , . . . , Q) within each of which we choose a value Oq used
in Eq. (4).

When changing from the LHSF set at 0e to the one at 0q+~ neither 7s] Mur
nor its derivative with respect to 0 should change. This imposes continuity
conditions on the ba,~ r and their 0-derivatives at 0 = 0q +~, involving the overlap
matrix (9sur(Oq + 1, Oq) between the LHSF evaluated at Oq and Oq+l:

- JMHF . [~oJlTF(~q+l, 0q)] n'~'~- N'Z'n/t'lIJMITF(Y\'2," 0q+ 1) [~n ' (~ l , Oq)> (7)

The 5-dimensional integrals required to evaluate the elements of h sssr, s Jut,
jJssr and (_9 snr are performed analytically over the three Euler angles ~b~, 0x and
i/x~ and by two-dimensional numerical quadratures over yx and a~. These
numerical quadratures are the most expensive part of the entire LHSF computa-
tion and account for over 90% of the total time needed to calculate the eba, Mssr
and the matrices j s u r and (9 attr.

The system of second-order ordinary differential equations in the ~,~M nr is
integrated as an initial value problem from small values of 0 to large values using
Manolopoulos' logarithmic derivative propagator [32]. Matrix inversions ac-
count for more than 90% of the time used by this propagator on sequential

Quantum chemical reaction dynamics on a highly parallel supercomputer 229

machines. All aspects of the physics can be extracted from the solutions at large
by a constant ~ projection [10, 1l, 38].

3. Parallel algorithm

One must first have an idea of what can be gained by parallel processing. Vast
speedup can only be achieved for problems that can be grouped into concurrent
cooperative subtasks. This, of course, involves an understanding of the level of
parallelism that a problem manifests. Even with such understanding and an
adequate mapping onto a system of cooperative processors, there still remains
the critical issue of how to best implement processor coordination. Further, it is
vitally important that the local data in processors be correct in a global sense,
i.e., data modifications must be distributed across private memory boundaries.
Since quantum reactive scattering calculations are well suited to multiprocessor
systems, parallelism is achieved by data decomposition rather than by functional
decomposition, i.e., by making all nodes execute the same code but with different
data. In building a parallel implementation on the hypercube architecture, our
main guidelines have been simplicity and utilization of as much of the original
sequential code as possible.

The computer used for this work is a 64-processor Mark IIIfp hypercnbe. It
consists of an ensemble of individual processing elements called nodes. The design
of the Mark IIIfp hypercube permits as few as one and as many as 256 nodes in
the ensemble. It is a leading design for MIMD-type (multiple instruction stream
multiple data stream) distributed memory parallel architectures based on message
passing [26-28]. Each node consists of two independent Motorola 68020 mi-
croprocessors, one for computation and one for I/O, and four megabytes of
dynamic local memory with an access speed of 400 nanoseconds. The computation
microprocessor has a Motorola 68882 floating-point arithmetic coprocessor, two
serial ports, one printer port and 128 kilobytes of static private memory. The I/O
microprocessor has 64 kilobytes of static private memory, one serial port and
hardware to support the node to node communication within the hypercube. An
additional daughter board with a pipe-lined 32-bit floating point unit based on
the Weitek XL series of chips is attached to each node which further contains 128
kilobytes of code cache, 128 kilobytes of static memory and has a nominal peak
speed of 16 Mflops. The Crystalline Operating System (CrOS)-channel-addressed
synchronous communication provides the library routines to handle communica-
tions between nodes [28, 39, 40]. Program development is done on a Motorola
68020-based Counterpoint workstation that runs on UNIX. It acts as an access
controller mechanism to the peripherals for the entire hypercube. This allows the
native compilers and linkers of the control processor to be used to construct
executable code to run on the nodes of the hypercube. The parallel programs
consist of two complementary parts with one running on the control processor
and one running on each hypercube node. It is written in C programming
language except for the time-consuming two-dimensional quadratures and matrix
inversions, which are optimized in Weitek XL assembly language.

The hypercube is configured as a two-dimensional array of processors. The
mapping is done using binary Gray codes [28, 41] which gives the Cartesian
coordinates in processor space and communication channel tags for a processor's
nearest neighbors. With a distributed-memory machine like the hypercube, the
elements of a large matrix of data must be distributed across the memory of all

230 Y.M. Wu et al.

the processors. This makes it possible to fully utilize the large memory available
and if done properly facilitates the load-balancing task of keeping most of the
processors busy doing useful arithmetic most of the time. The parallelization of
scientific codes is frequently based on a large grain size decomposition of the
task. To port a sequential code to a hypercube, a method of distributing the
global matrix among the processors is the first choice that must be made and it
is closely related to the parallel algorithm chosen.

We mapped the matrices intoprocessor space by local decomposition. Let Nr
and Nc be the number of processors in the rows and columns of the hypercube
configuration, respectively. Element A(i,j) of an M x M matrix is placed in
processor row Pr = int((i x Nr)/M) and column Pc = int((j x Nc)/M), where
int x means the integer part of x. This data decomposition has been found easy
to maintain and has provided satisfactory load balancing; it has the further
advantage that it does not require matrices of special dimensions.

The parallel code implemented on the hypercube consists of five major steps.
Step one constructs, for each value of 0q, a primitive basis set composed of the
product of Wigner rotation matrices, associated Legendre functions, and the
numerical one-dimensional functions in cox mentioned in Sect. 2 and obtained by
solving the corresponding one-dimensional eigenvalue-eigenvector differential
equation using a finite difference method. This requires that a subset of the
eigenvalues and eigenvectors of a tridiagonal matrix be found.

A bisection method [42] which accomplishes the eigenvalue computation
using the TRIDIB routine from EISPACK [43] was ported to the Mark IIIfp.
This implementation of the bisection method allows computation of any number
of consecutive eigenvalues specified by their indices. Eigenvectors are obtained
using the EISPACK inverse iteration routine TINVIT with modified Gram-
Schmidt orthogonalization. Each processor solves independent tridiagonal eigen-
problems since the number of eigenvalues desired from each tridiagonal system
is small but there are a large number of distinct tridiagonal systems. To achieve
load balancing, we distributed subsets of the primitive functions among the
processors in such a way that no processor computes greater than one eigenvalue
and eigenvector more than any other. These large grain tasks are most easily
implemented on MIMD machines; SIMD (single instruction stream multiple
data stream) machines would require more extensive modifications and would be
less efficient because of the sequential nature of currently known effective
eigenvalue iteration procedures. The one-dimensional functions obtained are
then broadcast to all the other nodes.

In step two a large number of two-dimensional quadratures involving the
primitive basis functions which are needed for the variational procedure are
evaluated. These quadratures are highly parallel procedures requiring no com-
munication overhead once each processor has the necessary subset of functions.
Each processor calculates a subset of integrals independently.

Step three assembles these integrals into the real symmetric dense matrices
sJrlr(Oq) and hSnr(Oq) which are distributed over processor space. The entire
spectrum of eigenvalues and eigenvectors for the associated variational problem
is sought. With the parallel implementation of the Householder method [44], this
generalized eigensystem is tridiagonalized and the resulting single tridiagonal
matrix is solved in each processor completely with the QR algorithm [45]. The
QR implementation is purely sequential since each processor obtains the entire
solution to the eigensystem. However, only different subsets of the solution are
kept in different processors for the evaluation of the interaction and overlap

Quantum chemical reaction dynamics on a highly parallel supercomputer 231

matrices in step four. This part of the algorithm is not time-consuming and the
straightforward sequential approach was chosen. It has the further effect that the
resulting solutions are fully distributed, so no communication is required.

Step four evaluates the two-dimensional quadratures needed for the interac-
tion JJnr(Q;Oq) and overlap (ffJIIr(Oq+l;Oq) matrices. The same type of al-
gorithms are used as were used in step two. By far, the most expensive part of
the sequential version of the surface function calculation is the calculation of the
large number of two-dimensional numerical integrals required by steps 2 and 4.
These steps are however highly parallel and well suited for the hypercube.

Step five uses Manolopoulos' [32] algorithm to integrate the coupled linear
ordinary differential equations. The parallel implementation of this algorithm is
discussed elsewhere [30]. The algorithm is dominated by parallel Gauss-Jordan
matrix inversion and is I/O intensive, requiring the input of one interaction
matrix per integration step. To reduce the I/O overhead a second source of
parallelism is exploited. The entire interaction matrix (at all Q) and overlap
matrix (at all 0q) data sets are loaded across the processors and many collision
energies are calculated simultaneously. This strategy works because the same set
of data is used for each collision energy and because enough main memory is
available. Calculation of scattering matrices from the final logarithmic derivative
matrices is not computationally intensive, and is done sequentially.

The program steps were all run on the Weitek coprocessor which only
supports 32-bit arithmetic. Experimentation has shown that this precision is
sufficient for the work reported below. The 64-bit arithmetic hardware needed
for larger calculations was installed after the present calculations were
completed.

4. Results and discussion

Accuracy. Calculations were performed for the H + H2 system on the LSTH
surface [33, 34] for partial waves with total angular momentum J = 0, 1, 2 and
energies up to 1.6 eV. Flux is conserved to better than 1% for J = 0, 2.3% for
J = 1 and 3.6% for J = 2 for all open channels over the entire energy range
considered.

To illustrate the accuracy of the 32-bit arithmetic calculations, the scattering
results from the Mark IIIfp with 64 processors are compared with the results
obtained using a CRAY X-MP/48 and a CRAY 2. The differences of the
transition probability do not exceed 0.004 in absolute value over the energy
range investigated.

Timing and parallel efficiency. In Tables 1 and 2 we present the timing data on
the 64 processor Mark IIIfp, a CRAY X-MP/48 and a CRAY 2, for both the
surface function code (including calculation of the overlap (9 snr and interaction
j :nr matrices) and the logarithmic derivative propagation code. For the surface
function code, the speeds on the first two machines is about the same. The
CRAY 2 is 1.43 times faster than the Mark IIIfp and 1.51 times faster than the
CRAY X-MP/48 for this code. The reason is that this program is dominated by
matrix-vector multiplications which are done in optimized assembly code in all 3
machines. For this particular operation the CRAY 2 is 2.03 times faster than the
CRAY X-MP/48 whereas for more memory-intensive operations the CRAY 2 is
slower than the CRAY X-MP/48 [46]. A slightly larger primitive basis set is

232

Table 1. Performance of the surface function code d

Y. M. Wu et al.

J Mark IIIfp b 64 processors CRAY X-MP/48 CRAY 2

Time (h) Speed (Mflops) Time (h) Speed (Mftops) Time (h) Speed (Mflops)

0 0.71 c 100 d 0.74 ~ 96 f 0.49g 145 h
1 2.88 i] 120 3.04J 106 r 2.01 k 160 h
2 5.601 124 a 5.94 TM 117 n 3.96 ° 176 k

a This code calculates the surface functions at the 51 values of ~ from 2.0 bohr to 12.0 bohr in steps
of 0.2 bohr, the corresponding overlap matrices between consecutive values of ~ and the propagation
matrices in Q steps of 0.1 bohr. The number of primitives used for each J and described in the
remaining footnotes permits us to generate enough LHSF to achieve the accuracy described in the
text
b 64 single precision processors
c For 80A1, 80Az and 160E primitives. This basis is larger than the one described in e below and is
needed to generate the same number of linearly independent surface functions as in e. The reason for
this difference is the 32-bit arithmetic of the Mark IIIfp compared to the 64-bit arithmetic of the
CRAY X-MP/48
d Estimated on the basis of the absolute measured speed on the CRAY X-MP/48 and the measured
relative speeds of the Mark IIIfp with respect to the CRAY X-MP/48
e For 76A1, 76A2 and 152E primitives
f Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines
g This time, for the same primitives as described in e was estimated on the basis of the relative speeds
of the CRAY 2 and CRAY X-MP/48 measured for a set of 5 values of ~. It is smaller than the time
in ~ for the reason given in h
h Estimated on the basis of the relative speed of the CRAY 2 with respect to the CRAY X-MP/48
described in g. The reason this speed is 2/3 of the corresponding CRAY X-MP/48 speed is that the
dominant parts of the calculation are optimized assembly code matrix-vector multiplications for
which the CRAY 2 is 50% faster than the CRAY X-MP/48. Otherwise, the CRAY 2 is slightly slower
than CRAY X-MP/48. See text
i For 72A1, 80A 2 and 152E primitives of even parity and 152A1, 160A 2 and 312E primitives of odd
parity. These numbers of primitives are larger than the ones given in J for the reason given in c
J For 64A1, 76A 2 and 140E primitives of even parity and 140Al, 152A 2 and 292E primitives of odd
parity
k Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY 2 and the
measured CRAy X-MP/48 times or speeds
1 For 216A1, 232A 2 and 448E primitives of even parity and 136A1, 152A 2 and 288E primitives of odd
parity. These numbers are larger than those in ° for the reason given in c
m This time is estimated as in k, since the calculation cannot be done on the CRAY X-MP/48 because
of insufficient memory
n Estimated to be the same as in f, since the calculation cannot be done on the CRAY X-MP/48 for
the reason given in m
° For 204A 1 , 216A 2 and 420E primitives of even parity and 128A1, 140A z and 268E primitives of odd
parity

r e q u i r e d o n the M a r k I I I f p in o r d e r to o b t a i n su r f ace f u n c t i o n ene rg ies o f an
a c c u r a c y e q u i v a l e n t to t h a t o b t a i n e d w i t h t he C R A Y m a c h i n e s . Th i s is d u e to
t he l o w e r a c c u r a c y o f t he 32-bi t a r i t h m e t i c o f t he f o r m e r w i t h r e s p ec t to t he
64-bi t a r i t h m e t i c o f the la t te r .

T h e a b s o l u t e t imes p r e s e n t e d in T a b l e s 1 a n d 2 a re ap t to d e c r e a s e as t he
c o d e s a re i m p r o v e d a n d the n u m e r i c a l p a r a m e t e r s are f u r t h e r t u n ed . A s a resul t ,
t h e y are n o t well su i ted fo r a c o m p a r i s o n o f the re la t ive e f fec t iveness o f d i f f e ren t

Quantum chemical reaction dynamics on a highly parallel supercomputer

Table 2. Performance of the logarithmic derivative code a

233

Mark IIIfp b CRAY X-MP/48 CRAY 2

64 processor 8 clusters of
global configuration c 8 processors a

Total time (h) 4.8 e 3.4 f,g 1.5 2.9 h
Time for 1 energy (min) 2.2 i 1.6 i 0.7 1.3
Efficiency 0.52 0.81 - - - -
Speed j (Mflops) 34.4 k 48.5 k 110 55.4

a Based on a calculation using 245 surface functions and 131 energies, and a logarithmic derivative
integration step of 0.01 bohr
b 64 single precision processors
c The calculation for each energy was distributed among all 64 processors
d The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations
for 16 energies, for a total of 128 energies. The times reported were multiplied by 131/128 for
normalization purposes. All 8 clusters operated simultaneously
e This includes 1.9 hours of I/O time
fThis includes 1.6 hours of I/O time. This time is shorter than that in e because of a different and
more efficient broadcast of the data between the host and the 8 clusters
g Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported
was obtained by subtracting the I/O time from the measured time, multiplying the result by 131/128
for normalization to 131 energies and adding the I/O time
h Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY 2
and CRAY X-MP/48 for the logarithmic derivative code
i This includes the pro-rated I/O contribution
JAil speeds include I]O contribution
k Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code
and the relative speeds of the Mark IIIfp and CRAY X-MP/48 for this code

react ive scat ter ing m e t h o d o l o g i e s [10-21]. The re levant i n fo rma t ion in those
tables is, instead, the relat ive t imes a m o n g different machines as given by the cor-
r e spond ing speeds. These are indicat ive o f the relat ive effectiveness o f these
machines for pe r fo rming the react ive scat ter ing calcula t ions descr ibed in this paper .

The efficiency (E) o f the para l le l L H S F code was de te rmined using the
defini t ion ~ = 7"1/(N x TN) where 7"1 and TN are respect ively the execut ion t imes
using a single p rocessor and N processors . The single processor t imes are
ob ta ined f rom runs pe r fo rmed af ter removing the overhead o f the paral le l code,
i.e., af ter r emoving the commun ica t i on calls and some logical s tatements . Perfect
efficiency (e = 1.0) implies tha t the N - p r o c e s s o r hypercube is N t imes faster than
a single processor . In Fig. 1 efficiencies for the surface funct ion code (inc luding
the ca lcula t ion o f the over lap and in te rac t ion matr ices) as a funct ion o f the size
o f the pr imi t ive basis set are p lo t t ed for 2, 4, 8, 16, 32 and 64 processor
conf igura t ions o f the hypercube. The g lobal d imens ions o f the matr ices used are
chosen to be integer mul t ip les o f the n u m b e r o f p rocessor rows and co lumns in
o rde r to insure load ba lanc ing a m o n g the processors . Because o f the l imited size
o f a single p rocessor memory , the efficiency de t e rmina t ion is l imited to 32
primit ives. As shown in Fig. 1, the efficiencies increase mono ton i ca l l y and
a p p r o a c h uni ty a sympto t i ca l ly as the size o f the ca lcula t ion increases. Converged
results require large enough pr imi t ive basis sets so tha t the efficiency o f the
surface funct ion code is es t imated to be a b o u t 0.95 or greater.

234 Y . M . Wu et al.

1.0

0.8

0.6

LU 0.4

0.2

0.0

Number of _ ~

Y/
16

10 20 30
Global Matr ix Dimension

40

Fig. 1. Efficiency of the
surface function code
(including the calculation
of the overlap and
interaction matrices) as a
function of the global
matrix dimension (i.e., the
size of the primitive basis
set) for 2, 4, 8, 16, 32, and
64 processors. The solid
curves are straight line
segments connecting the
data points for a fixed
number of processors and
are provided as an aid to
examine the trends

The data for the logarithmic derivative code given in Table 2 for a 245
channel (i.e., LHSF) example show that the Mark IIIfp has a speed about 62%
to that of the CRAY 2 but only about 31% of that of the CRAY X-MP/48.
This code is dominated by matrix inversions, which are done with optimized
assembly code in all three machines. The reason for the slowness of the
hypercube with respect to the CRAYs is that the efficiency of the parallel
logarithmic derivative code is 0.52 and by slow I/O to external storage devices.
This relatively low value is due to the fact that matrix inversions require a
significant amount of inter-processor communication. Figure 2 displays efficien-
cies of the logarithmic derivative code as a function of the number of channels
propagated for different processor configurations, as done previously for
the Mark III [30, 47] hypercubes. The data can be fit well by an operations
count formula developed previously for the matrix inversion part of the code

1.0

0,8

0,6

"~ 0.4

0.2

0.0

~lumber of

,

50 t 00 150 200 250

Global Matrix Dimension

Fig. 2. Efficiency of
logarithmic derivative code
as a function of the global
matrix dimension (i.e., the
number of channels or
LHSF) for 8, 16, 32, and
64 processors. The solid
curves are straight line
segments connecting the
data points for a fixed
number of processors and
are provided as an aid to
examine the trends

Quan tum chemical reaction dynamics on a highly parallel supercomputer 235

[48]; this formula can be used to extrapolate the data to larger numbers of
processors or larger numbers of channels. It can be seen that for an 8 processor
configuration, the code runs with an efficiency of 0.81. This observation suggested
that we divide the Mark IIIfp into 8 clusters of 8 processors each and perform
calculations for different energies in different clusters. The corresponding timing
information is also given in Table 2. As can be seen from the last row of this table,
the speed of the logarithmic derivative code using this configuration of the 64
processor Mark IIIfp is 48.5 Mflops, which is about 44% of that of the CRAY
X-MP/48 and 88% of that of the CRAY 2. As the number of channels increases,
the number of processors per cluster may be made larger in order to increase the
amount of memory available in each cluster. The corresponding efficiency should
continue to be adequate due to the larger matrix dimensions involved.

Ongoing and future work. From the previous discussions it appears that our
application is well adapted to the hypercube architecture. However, our systems
are experimental and continually evolving in terms of both hardware and
software. In the near future, the number of processors of the Mark IIIfp will be
increased to 128 and the I/O system will be replaced by high performance CIO
(concurrent I/O) hardware. The new Weitek coprocessors, installed since the
present calculations were done perform 64 bit floating point arithmetic at about
the same nominal peak speed as the 32 bit boards. From the data in the present
paper it is possible to predict with good reliability the performance of this
upgraded version of the Mark IIIfp. Speed measurements on the CRAY Y-MP/
864 of the San Diego Supercomputer Center show that it is 2 times faster than
the CRAY X-MP/48 for the surface function code and 1.7 times faster for the
logarithmic derivative code. In Table 3, we summarize the available or predicted
speed information for the present codes for the current 64 processor and near
future 128 processor Mark IIIfp as well as the CRAY X-MP/48, CRAY 2 and
CRAY Y-MP/864 supercomputers. It can be seen that Mark IIIfp machines are
competitive with all of the currently available CRAYs (operating as single
processor machines).

Table 3. Overall speed of reactive scattering codes on several machines

Mark IIIfp C R A Y C R A Y 2 C R A Y
X-MP/48 Y-MP 864

64 processor 128 processors

Surface function code
for J = 2 (Mflops) 124 240 a 117 b 176 b 232 b

Logarithmic derivative
code c (Mflops) 48.5 d 127 a,a,e 110 b 55.4 b 187 b

Total main memory of
computer (64 bit Mwords) 32 64 8 256 64

a Estimated on the basis of the 64 processor performance
b For single processor operation
c For 245 channels. As the number of channels increases, the Mark IIIfp speed increases by a factor
not exceeding 1.25, but the speed of the C R A Y machines remains approximately constant
d Hypercube configured in clusters o f 8 processors
e This speed assumes four-fold increase in the 1/O data rate, compared to the 64 processor machine,
due to concurrent I/O hardware

236 Y.M. Wu et al.

Today's supercomputers perform billions of arithmetic operations per sec-
ond; by the mid 1990s, speed should be at least hundreds of times greater. In
Table 4, we indicate the characteristics of some hypothetical future parallel
machine characteristics including the upgraded Mark IIIfp hypercube just men-
tioned. Quantum chemical reaction dynamics computations to date have in-
volved three atoms and strain the power of current supercomputers. The number
N of coupled equations (or channels) which must be solved depends on the
number of molecular ro-vibration states that are accessible, which in turn
determines the order of the matrices that are manipulated. The matrix operations
require a number of floating point operations of the order of N 3, and as a result
the computational load increases as the cube of the number of channels. The
memory requirements, on the other hand, increase with N 2. For class A type
machines (see Table 4), of the order of 100 hours of CPU time on a single CPU
of a CRAY Y-MP and 48 Mwords of memory are needed to calculate cross
sections for the simple H + H 2 - - * H 2 + H reaction at 100 energies. Chemical
reactions which are not thermoneutral and involve heavier atoms such as O + H2
or F + HD will require about two orders of magnitude more computing time and
up to 2 Gigawords of memory, depending on the number of channels involved.
Class B type machines will be needed for the study of such reaction. For three
atom reactions on two electronically adiabatic surfaces or four atoms reactions
like H + H 2 0 or H + COH, class C Tflop machines will be needed. Such
machines should be available in the next 5 to 10 years. They should permit the
ab inito study of hundreds of bimolecular chemical reactions of importance for
the understanding of combustion, plasmas, atmospheric chemistry and other
complex systems of basic and technological interest. The experience gained in the
use of class A and B machines should improve the design and facilitate the use
of class C computers.

From Tables 1 to 3, we can find that the design details of different
supercomputers make some better-suited for certain computations than others.
For example, the surface function code is more efficient on the current Mark
IIIfp 128 node hypercube while the logarithmic derivative code will run better on
CRAY-type machines. Distributing large computations among several super-
computers will provide the opportunity both to bring to bear greater computing
power than is available in any single machine and to use the most suitable

TaMe 4. Hypothetical future parallel supercomputer characteristics

Class A Class B Class C
Mark IIIfp (1991 1995) a (1996-2000) a

Sustained speed/node
(Mflops) 2 20 200

Memory/node
(Mwords) 0.5 4 32

Inter-node communication
bandwidth (Mbyte/s) 1 100 1000

Number of nodes 128 1024 8192
Total sustained speed 256 Mflops 20 Gflops 1.6 Tflops
Total memory 64 Mword 4 Gword 262 Gword
Total I/O rate 128 Mbyte/s 10 Gbyte/s 1 Tbyte/s

a Time frame within which this machine class is expected to become available

Quantum chemical reaction dynamics on a highly parallel supercomputer 237

machine for each step of the task. Currently, a high performance network is
being developed to support host interfaces that operate at 800 million bits per
second (Mbps) and that will connect multiple supercomputers at the Los Alamos
National Laboratory, the California Institute of Technology, the Jet Propulsion
Laboratory and the San Diego Supercomputer Center. With such a distributed
heterogeneous computer, it should be possible for example to run a single
program on the eight processors of the SDSC C R A Y Y-MP/864 and the 128
processors of the Caltech Mark I I I fp hypercube at the same time with a total
available memory of 128 Mwords. Quantum scattering calculations on larger,
more complicated chemical systems would also then become feasible with
heterogeneous computers of this type.

5. Conclusion

We have developed and implemented a strategy for performing quantum me-
chanical reactive scattering calculations on the Mark I I I fp hypercube parallel
supercomputer. The results obtained for the H + H2 system J = 0, 1, 2 partial
waves agree well with those from a C R A Y X-MP/48 and a C R A Y 2. The high
degree of parallelism of the most time-consuming step of the surface function
calculation (the evaluation of two-dimensional numerical quadratures) leads to a
high efficiency for that calculation. As a result, the speed of the 64 processor
Mark I I I fp for the surface function calculation is about the same as that of the
C R A Y X-MP/48 and about 0.7 of that of the CRAY 2. When configuring the
Mark I I I fp into 8 clusters of 8 processors each, the logarithmic derivative code
is about 56% slower than the C R A Y X-MP/48 and 12% slower than the CRAY
2. The speed of the 128 processor Mark I I I fp soon to become available should
exceed, both for the surface function calculation and the logarithmic derivative
calculation, that of the C R A Y X-MP/48 and of the CRAY 2; however, although
still comparable to the C R A Y Y-MP/864 for the surface function code, it will be
32% slower for the logarithmic derivative code (the CRAYs operating as single
processor machines). These results demonstrate the feasibility of performing
reactive scattering calculations with high efficiency in parallel fashion. As the
processors continue to become more powerful and their number continue to
increase and with the help of high speed networks of the type currently being
developed, such parallel calculations in systems of greater complexity will
become practical in the not too distant future.

Acknowledgements. The work described in this paper was supported in part by DOE grant DE-AS03-
83ER, by Air Force Astronautics Laboratory contract F04611-86-K-0067, and by funds from the
corporation for National Research Initiatives. The calculations were performed on the 64 processor
Mark IIIfp Caltech/JPL hypercube, the CRAY X-MP/48 at JPL, the CRAY X-MP/48 and CRAY
Y-MP/864 at the NSF San Diego Supercomputing Center and the CRAY 2 at the Air Force Weapons
Laboratory and we thank those institutions for their help. One of the authors (SAC) thanks NSF for
a graduate fellowship. We also thank Dr. B. Lepetit and Prof. Geoffrey Fox for useful discussions.

References

1. Truhlar DG, Wyatt RE (1976) Ann Rev Phys Chem 27:1
2. Schatz GC (1986) in: Clary DC (ed) Theory of chemical reaction dynamics. Proc NATO

workshop, Orsay, France, p 1

238 Y.M. Wu et al.

3. Garrett BC, Truhlar DG (1984) Ann Rev Phys Chem 35:159
4. Bowman JM (1985) Adv Chem Phys 61:115
5. Schatz GC, Kuppermann A (1975) J Chem Phys 62:2502
6. Schatz GC, Kuppermann A (1976) J Chem Phys 65:4642; 65:4668
7. Elkowitz AB, Wyatt RE (1975) J Chem Phys 62:2504, 63:702
8. Walker RB, Stechel EB, Light JC (1978) J Chem Phys 69:2922
9. Bernstein RB (ed) (1979) Atom-molecule collision theory. Plenum, New York

10. Kuppermann A, Hipes PG (1986) J Chem Phys 84:5962
11. Hipes PG, Kuppermann A (1987) Chem Phys Lett 133:1
12. Parker GA, Pack RT, Archer BJ, Walker RB (1987) Chem Phys Lett 137:564; Pack RT, Parker

GA (1987) J Chem Phys 87:3888
13. Zhang JZH, Miller WH (1987) Chem Phys Lett 140:329; (1988) 153:465; (1989) 159:130
14. Schatz GC (1988) Chem Phys Lett 150:92
15. Haug K, Schwenke DW, Shima Y, Truhlar DG, Zhang J, Kouri DJ (1986) J Phys Chem

90:6757; Schwenke DW, Haug K, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ (1987) J Phys
Chem 91:6080; Zhang JZH, Kouri DJ, Haug K, Schwenke DW, Shima Y, Truhlar DG (1988)
J Chem Phys 88:2492

16. Mladenovic M, Zhao M, Truhlar DG, Schwenke DW, Sun Y, Kouri DJ (1988) Chem Phys Lett
146:358; Yu CH, Kouri DJ, Zhao M, Truhlar DG (1989) Chem Phys Lett 157:491

17. Cuccaro SA, Hipes PG, Kuppermann A (1989) Chem Phys Lett 154:155
18. Cuccaro SA, Hipes PG, Kuppermann A (1989) Chem Phys Lett 157:440
19. Webster F, Light JC (1989) J Chem Phys 90:300
20. Linderberg J, Padkjaer S, Ohrn Y, Vessal B (1989) J Chem Phys 90:6254
21. Manolopoulos DE, Wyatt RE (1989) Chem Phys Lett 159:i23
22. Kuppermann A (1975) Chem Phys Lett 32:374
23. Ling RT, Kuppermann A (1975) in: Rusley JS, Geballe R (eds) Electronic and atomic collisions.

Abstracts of papers of the 9th Int Conf Physics of Electronic and Atomic Collisions, Seattle,
Washington, 24-30 July 1975, Vol 1, Univ Washington Press, Seattle, pp 353, 354

24. Launay JM, Donrneuf ML (1989) Chem Phys Lett 163:178
25. Launay JM, Dourneuf ML (1990) Chem Phys Lett 169:473
26. Seitz CL, Matisoo J (1984) Phys Today 37(5):38; Seitz CL (1985) Comm of the ACM 28(1):22
27. Fox GC, Otto SW (1984) Phys Today 37(5):50
28. Fox GC, Johnson MA, Cyzenga GA, Otto SW, Salmon JK, Walker DW (1988) Solving

problems in concurrent processors. Prentice Hall, New Jersey
29. Wu YM, Cuccaro SA, Hipes PG, Kuppermann A (1990) Chem Phys Lett 168:429
30. Hipes PG, Mattson T, Wu YM, Kuppermann A (1988) Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applications, Pasadena. ACM, New York, pp 1051
1061

31. Johnson BR (1973) J Compl Phys 13:445; (1977) J Chem Phys 67:4086; (1979) NRCC
Workshop, Lawrence Berkeley Laboratory, Report No LBL 9501

32. Manolopoulos DE (1986) J Chem Phys 85:6425
33. Liu B (1973) J Chem Phys 58:1925; Siegbahn P, Liu B (1973) J Chem Phys 58:1925; Siegbahn

P, Liu B (1978) J Chem Phys 68:2457
34. Truhlar DG, Horowitz CJ (1978) J Chem Phys 68:2468; (1979) 71:1514 (E)
35. Delves LM (1959) Nucl Phys 9:391; (1960) 20:275
36. Lepetit B, Peng Z, Kuppermann A (1990) Chem Phys Lett 166:572
37. Lepetit B, Kuppermann A (1990) Chem Phys Lett 166:581
38. Hood DM, Kuppermann A (1986) in: Clary DC (ed) Theory of chemical reaction dynamics.

Reidel, Dordrecht, pp 193-214
39. Fox GC (ed) (1985) Caltech JPL concurrent computation project Annual report 1983-1984
40. Fox GC, Lyzenga G, Rogstad D, Otto S (1985) The Caltech concurrent computation program -

Project description, Proc. 1985 ASME Intl Computers in Engineering Conference
41. Gilbert EN (1958) Bell System Technical Journal 37:815; Salmon J (1984) Caltech Concurrent

Computation Project Report C3P-51

Quantum chemical reaction dynamics on a highly parallel supercomputer 239

42. Ipsen ICF, Jessup ER (1987) Proc Second Conf Hypercube Multiprocessors, Knoxville, Tennes-
see; Ipsen ICF, Jessup ER (1987) Yale internal report: YALEU/DCS/RB-548; Fox GC (1984)
Caltech Concurrent Computation Project Report C3P-95

43. Smith BT (1976) Matrix Eigensystem Routine-EISPACK Guide, 2nd ed., Vol 6 of Lecture Notes
in Computer Science, Springer-Verlag, New York

44. Fox GC (1984) Caltech Concurrent Computation Project Report C3P-98; Patterson J (1986)
Caltech Concurrent Computation Project Report C3p-56.58

45. Wilkinson JH, Reinsch C (1971) Linear algebra, vol II of Handbook for Automatic Computa-
tion, Springer-Verlag, New York, pp 227-240

46. Pfeiffer W, Alagar A, Kamrath A, Leary RH, Rogers J (1988) Benchmarking and optimization
of scientific codes on the CRAY X-MP, CRAY 2, and SCS-40 vector computers. San Diego
Supercomputer Center Report GA-A19478

47. Messina P, Baillie CF, Felten EW, Hipes PG, Walker DW, Williams RD, Pfeiffer W, Alagar A,
Kamrath A, Leary RH, Rogers J (1988) Benchmarking advanced architecture computers.
Caltech Concurrent Computation Project Report C3p-712

48. Hipes PG, Kuppermann A (1988) Gauss Jordan inversion with pivoting on the Caltech Mark
II Hypercube, in: Fox GC (ed) Proc Third Conf Hypercube Multiprocessors, Pasadena, CA,
19-20 January, Vol II - Applications. California Institute of Technology, Mail Stop 206-49,
Pasadena, CA, pp 1621 1634

